Estimates for eigenvalues of the Paneitz operator

Qing-Ming Cheng
Department of Applied Mathematics, Faculty of Sciences, Fukuoka University, Fukuoka 814-0180, Japan

Received 16 April 2014; revised 17 June 2014
Available online 7 August 2014

Abstract

For an n-dimensional compact submanifold M^{n} in the Euclidean space \mathbf{R}^{N}, we study estimates for eigenvalues of the Paneitz operator on M^{n}. Our estimates for eigenvalues are sharp. © 2014 Elsevier Inc. All rights reserved.

MSC: 53C40; 58C40
Keywords: A Paneitz operator; Q-curvature; Eigenvalues; The first eigenfunction

1. Introduction

For compact Riemann surfaces M^{2}, Li and Yau [11] introduced the notion of conformal volume, which is a global invariant of the conformal structure. They determined the conformal volume for a large class of Riemann surfaces, which admit minimal immersions into spheres. In particular, they proved that for a compact Riemann surface M^{2}, if there exists a conformal map from M^{2} into the unit sphere $S^{N}(1)$, then the first eigenvalue λ_{1} of the Laplacian satisfies

$$
\lambda_{1} \operatorname{vol}\left(M^{2}\right) \leq 2 V_{c}\left(N, M^{2}\right)
$$

and the equality holds only if M^{2} is a minimal surface in $S^{N}(1)$, where $V_{c}\left(N, M^{2}\right)$ is the conformal volume of M^{2}.

[^0]For 4-dimensional compact Riemannian manifolds, Paneitz [13] introduced a fourth order operator P_{g} defined by, letting div be the divergence for the metric g,

$$
\begin{equation*}
P_{g} f=\Delta^{2} f-\operatorname{div}\left[\left(\frac{2}{3} R g-2 \text { Ric }\right) \nabla f\right] \tag{1.1}
\end{equation*}
$$

for smooth functions f on M^{4}, where Δ and ∇ denote the Laplacian and the gradient operator with respect to the metric g on M^{4}, respectively, and R and Ric are the scalar curvature and Ricci curvature tensor with respect to the metric g on M^{4}. Furthermore, Branson [1] has generalized the Paneitz operator to an n-dimensional Riemannian manifold. For an n-dimensional Riemannian manifold (M^{n}, g), the operator P_{g} is defined by

$$
\begin{equation*}
P_{g} f=\Delta^{2} f-\operatorname{div}\left[\left(a_{n} R g+b_{n} \text { Ric }\right) \nabla f\right]+\frac{n-4}{2} Q f \tag{1.2}
\end{equation*}
$$

where

$$
Q=c_{n}|\operatorname{Ric}|^{2}+d_{n} R^{2}-\frac{1}{2(n-1)} \Delta R
$$

is called Q-curvature with respect to the metric g,

$$
\begin{gathered}
a_{n}=\frac{(n-2)^{2}+4}{2(n-1)(n-2)}, \quad b_{n}=-\frac{4}{n-2}, \\
c_{n}=-\frac{2}{(n-2)^{2}}, \quad d_{n}=\frac{n(n-2)^{2}-16}{8(n-1)^{2}(n-2)^{2}} .
\end{gathered}
$$

This operator P_{g} is also called Paneitz operator or Branson-Paneitz operator. It is known that Paneitz operator is conformally invariant of bi-degree $\left(\frac{n-4}{2}, \frac{n+4}{2}\right)$, that is, under conformal transformation of Riemannian metric $g=e^{2 w} g_{0}$, the Paneitz operator P_{g} changes into

$$
\begin{equation*}
P_{g} f=e^{-\frac{n+4}{2} w} P_{g_{0}}\left(e^{\frac{n-4}{2} w} f\right) \tag{1.3}
\end{equation*}
$$

Let $\mathfrak{M}\left(M^{n}\right)$ be the set of Riemannian metrics on M^{n}. For each $g \in \mathfrak{M}\left(M^{n}\right)$, the total Q-curvature for g is defined by

$$
Q[g]=\int_{M^{n}} Q d v
$$

When $n=4$, from the Gauss-Bonnet-Chern theorem for dimension 4, we have

$$
\begin{equation*}
Q[g]=-\frac{1}{4} \int_{M^{4}}|W|^{2} d v+8 \pi^{2} \chi\left(M^{4}\right) \tag{1.4}
\end{equation*}
$$

where W is the Weyl conformal curvature tensor and $\chi\left(M^{4}\right)$ is the Euler characteristic of M^{4}. Hence, we know that the total Q-curvature is a conformal invariant for dimension 4.

We should remark that Paneitz operator and Q-curvature for 4-dimensional manifolds M^{4} enjoy similar conformal property under conformal change of metric as the Laplacian and Gaussian curvature do in dimension 2.

In [12], Nishikawa has studied the variation of the total Q-curvature for a general dimension n. He has proved that a Riemannian metric g on an $n(n \neq 4)$-dimensional compact manifold M^{n} is a critical point of the total Q-curvature functional with respect to a volume preserving conformal variation of the metric g, if and only if the Q-curvature with respect to the metric g is constant.

Furthermore, an important problem in conformal geometry is to construct conformal metrics for which a certain curvature quantity equals to a prescribed function (for examples, a constant). Brendle [3] has proved for a 4-dimensional compact Riemannian manifold M^{4}, if the Paneitz operator P_{g} has non-negative eigenvalues, its kernel consists of the constant functions and the total Q-curvature satisfying

$$
Q[g]<8 \pi^{2}
$$

then there exists a conformal metric \tilde{g} of g on M^{4} such that the Q-curvature with respect to the metric \tilde{g} is a constant multiple of a prescribed positive function. Hence, it is very important to study eigenvalues of the Paneitz operator P_{g}.

Gursky [9] have studied eigenvalues of the Paneitz operator for $n=4$. Since the Paneitz operator P_{g} is an elliptic operator and $P_{g} 1=0$ for $n=4$, we know that $\lambda_{0}=0$ is an eigenvalue of P_{g}. Gursky [9] shown that if the Yamabe invariant of M^{4} is non-negative and the total Q-curvature is non-negative, the first eigenvalue λ_{1} is positive. For $n \geq 6$, Yang and Xu [14] have proved the Paneitz operator P_{g} is positive if the scalar curvature is positive and Q-curvature is nonnegative. Furthermore, see $[2,4,5,10]$.

For $n \geq 3$, we consider the following closed eigenvalue problem on an n-dimensional compact manifold M^{n} :

$$
\begin{equation*}
P_{g} u=\lambda u . \tag{1.5}
\end{equation*}
$$

Since P_{g} is an elliptic operator, the spectrum of P_{g} on M^{n} is discrete. We assume

$$
0<\lambda_{1}<\lambda_{2} \leq \cdots, \lambda_{k} \leq \cdots \rightarrow+\infty
$$

for $n \neq 4$ and for $n=4$,

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots, \lambda_{k} \leq \cdots \rightarrow+\infty .
$$

When $n=4$, Yang and Xu [15] have introduced an N-conformal energy $E_{c}\left(N, M^{4}\right)$ if M^{4} can be conformally immersed into the unit sphere $S^{N}(1)$ and have obtained an upper bound for the first eigenvalue λ_{1} :

$$
\lambda_{1} \operatorname{vol}\left(M^{4}\right) \leq E_{c}\left(N, M^{4}\right)
$$

where $\operatorname{vol}\left(M^{n}\right)$ denotes the volume of M^{n}. Furthermore, Chen and Li [7] have also studied the upper bound on the first eigenvalue λ_{1} when M^{4} is considered as a compact submanifold in
a Euclidean space \mathbf{R}^{N}. They have proved

$$
\lambda_{1} \leq \frac{\int_{M^{4}}\left(16|H|^{2}+\frac{2}{3} R\right) d v \int_{M^{4}}|H|^{2} d v}{\left\{\operatorname{vol}\left(M^{4}\right)\right\}^{2}}
$$

and the equality holds if and only if M^{4} is a minimal submanifold in a sphere $S^{N-1}(r)$ for $N>5$ and M^{4} is a round sphere $S^{4}(r)$ for $N=5$. In [8], the second eigenvalue λ_{2} of the Paneitz operator P_{g} is studied. By making use of the conformal transformation introduced by Li and Yau [11], Chen and Li proved, for $n \geq 7$,

$$
\lambda_{2} \operatorname{vol}\left(M^{n}\right) \leq \frac{1}{2} n\left(n^{2}-4\right) \int_{M^{n}}|H|^{4} d v+\frac{n-4}{2} \int_{M^{n}} Q d v
$$

if M^{n} is a compact submanifold in the Euclidean space \mathbf{R}^{N}. Here $|H|$ denotes the mean curvature of M^{n} in \mathbf{R}^{N}. As they remarked, their method does not work for $3 \leq n \leq 6$.

The purpose of this paper is to study eigenvalues of the Paneitz operator P_{g} in n-dimensional compact Riemannian manifolds. Our method is very different from one used by Chen and Li [8] and Xu and Yang [15]. From Nash's theorem, we know that each compact Riemannian manifold can be isometrically immersed into a Euclidean space \mathbf{R}^{N}. Thus, we can assume M^{n} is an n-dimensional compact submanifold in \mathbf{R}^{N}.

Theorem 1.1. Let $\left(M^{4}, g\right)$ be a 4-dimensional compact submanifold with the metric g in \mathbf{R}^{N}. Then, eigenvalues of the Paneitz operator P_{g} satisfy

$$
\sum_{j=1}^{4} \lambda_{j}^{\frac{1}{2}} \leq 4 \frac{\sqrt{\int_{M^{4}}\left(16|H|^{2}+\frac{2}{3} R\right) d v \int_{M^{4}}|H|^{2} d v}}{\operatorname{vol}\left(M^{4}\right)}
$$

and the equality holds if and only if M^{4} is a round sphere $S^{4}(r)$ for $N=5$ and M^{4} is a compact minimal submanifold with constant scalar curvature in $S^{N-1}(r)$ for $N>5$.

Corollary 1.1. Let $\left(M^{4}, g\right)$ be a 4-dimensional compact submanifold with the metric g in the unit sphere $S^{N}(1)$. Then, eigenvalues of the Paneitz operator P_{g} satisfy

$$
\sum_{j=1}^{4} \lambda_{j}^{\frac{1}{2}} \leq 4 \frac{\sqrt{\int_{M^{4}}\left(16|H|^{2}+16+\frac{2}{3} R\right) d v \int_{M^{4}}\left(|H|^{2}+1\right) d v}}{\operatorname{vol}\left(M^{4}\right)}
$$

and the equality holds if and only if M^{4} is a compact minimal submanifold with constant scalar curvature in $S^{N}(1)$.

Theorem 1.2. Let $\left(M^{n}, g\right)(n>4)$ be an n-dimensional compact submanifold with the metric g in \mathbf{R}^{N}. Then, eigenvalues of the Paneitz operator P_{g} satisfy

$$
\begin{aligned}
\sum_{j=1}^{n} & \left(\lambda_{j+1}-\lambda_{1}\right)^{\frac{1}{2}} \\
& \leq \sqrt{\int_{M^{n}} \frac{n\left(n^{2}-4\right)|H|^{2}}{2} u_{1}^{2} d v+2(n+2) \int_{M^{n}} g\left(\nabla u_{1}, \nabla u_{1}\right) d v} \\
& \times \sqrt{\int_{M^{n}} n^{2}|H|^{2} u_{1}^{2} d v+4 \int_{M^{n}} g\left(\nabla u_{1}, \nabla u_{1}\right) d v}
\end{aligned}
$$

and the equality holds if and only if M^{n} is isometric to a sphere $S^{n}(r)$, where u_{1} is the normalized first eigenfunction of P_{g}.

Remark 1.1. In our Theorem 1.2, we do not need to assume the positivity of the Paneitz operator P_{g}.

If the Paneitz operator P_{g} is a positive operator, we have
Theorem 1.3. Let $\left(M^{n}, g\right)(n \neq 4)$ be an n-dimensional compact submanifold with the metric g in the unit sphere $S^{N}(1)$. Then, eigenvalues of the Paneitz operator P_{g} satisfy

$$
\sum_{j=1}^{n} \lambda_{j}^{\frac{1}{2}}<n \frac{\sqrt{\int_{M^{n}}\left(\left(n^{2}|H|^{2}+n^{2}\right)+\left(n a_{n}+b_{n}\right) R+\frac{n-4}{2} Q\right) d v \int_{M^{n}}\left(|H|^{2}+1\right) d v}}{\operatorname{vol}\left(M^{n}\right)}
$$

2. Eigenvalues of the Paneitz operator on M^{4}

Assume that M^{n} is an n-dimensional submanifold in \mathbf{R}^{N}. Let $\left(x_{1}, \cdots, x_{n}\right)$ be a local coordinate system in a neighborhood U of $p \in M^{n}$. Let \mathbf{y} be the position vector of p in \mathbf{R}^{N}, which is defined by

$$
\mathbf{y}=\left(y_{1}\left(x_{1}, \cdots, x_{n}\right), \cdots, y_{N}\left(x_{1}, \cdots, x_{n}\right)\right)
$$

Let g denote the induced metric of M^{n} from \mathbf{R}^{N} and \langle,$\rangle is the standard inner product in \mathbf{R}^{N}$. Chen and Cheng [6] have proved the following:

Lemma 2.1. For any function $u \in C^{\infty}\left(M^{n}\right)$, we have

$$
g_{i j}=g\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)=\left\langle\sum_{\alpha=1}^{N} \frac{\partial y_{\alpha}}{\partial x_{i}} \frac{\partial}{\partial y_{\alpha}}, \sum_{\beta=1}^{N} \frac{\partial y_{\beta}}{\partial x^{i}} \frac{\partial}{\partial y_{\beta}}\right\rangle=\sum_{\alpha=1}^{N} \frac{\partial y_{\alpha}}{\partial x^{i}} \frac{\partial y_{\alpha}}{\partial x^{j}},
$$

$$
\begin{align*}
& \sum_{\alpha=1}^{N}\left(g\left(\nabla y_{\alpha}, \nabla u\right)\right)^{2}=|\nabla u|^{2}, \\
& \sum_{\alpha=1}^{N} g\left(\nabla y_{\alpha}, \nabla y_{\alpha}\right)=\sum_{\alpha=1}^{N}\left|\nabla y_{\alpha}\right|^{2}=n, \\
& \sum_{\alpha=1}^{N}\left(\Delta y_{\alpha}\right)^{2}=n^{2}|H|^{2}, \\
& \sum_{\alpha=1}^{N} \Delta y_{\alpha} \nabla y_{\alpha}=0, \tag{2.1}
\end{align*}
$$

where ∇ denotes the gradient operator on M^{n} and $|H|$ is the mean curvature of M^{n}.
Proof of Theorem 1.1. Let u_{i} be an eigenfunction corresponding to eigenvalue λ_{i} such that $\left\{u_{i}\right\}_{i=0}^{\infty}$ becomes an orthonormal basis of $L^{2}\left(M^{n}\right)$, that is,

$$
\left\{\begin{array}{l}
P_{g} u_{i}=\lambda_{i} u_{i}, \\
\int_{M^{4}} u_{i} u_{j} d v=\delta_{i j}, \quad i, j=0,1, \cdots .
\end{array}\right.
$$

We define an $N \times N$-matrix A as follows:

$$
A:=\left(a_{\alpha \beta}\right)
$$

where $a_{\alpha \beta}=\int_{M^{4}} y_{\alpha} u_{0} u_{\beta} d v$, for $\alpha, \beta=1,2, \cdots, N$, and $\mathbf{y}=\left(y_{\alpha}\right)$ is the position vector of the immersion in \mathbf{R}^{N}. Using the orthogonalization of Gram and Schmidt, we know that there exist an upper triangle matrix $T=\left(T_{\alpha \beta}\right)$ and an orthogonal matrix $U=\left(q_{\alpha \beta}\right)$ such that $T=U A$, i.e.,

$$
T_{\alpha \beta}=\sum_{\gamma=1}^{N} q_{\alpha \gamma} a_{\gamma \beta}=\int_{M^{4}} \sum_{\gamma=1}^{N} q_{\alpha \gamma} y_{\gamma} u_{0} u_{\beta} d v=0, \quad 1 \leq \beta<\alpha \leq N .
$$

Defining $z_{\alpha}=\sum_{\gamma=1}^{N} q_{\alpha \gamma} y_{\gamma}$, we get

$$
\int_{M^{4}} z_{\alpha} u_{0} u_{\beta} d v=\int_{M^{4}} \sum_{\gamma=1}^{N} q_{\alpha \gamma} y_{\gamma} u_{0} u_{\beta} d v=0, \quad 1 \leq \beta<\alpha \leq N .
$$

Putting

$$
\psi_{\alpha}:=\left(z_{\alpha}-b_{\alpha}\right) u_{0}, \quad b_{\alpha}:=\int_{M 4} z_{\alpha} u_{0}^{2} d v, 1 \leq \alpha \leq N,
$$

we infer

$$
\int_{M^{4}} \psi_{\alpha} u_{\beta} d v=0, \quad 0 \leq \beta<\alpha \leq N
$$

Thus, from the Rayleigh-Ritz inequality, we have

$$
\lambda_{\alpha} \int_{M^{4}} \psi_{\alpha}^{2} d v \leq \int_{M^{4}} \psi_{\alpha} P_{g} \psi_{\alpha} d v, \quad 1 \leq \alpha \leq N
$$

Since u_{0} is a nonzero constant and

$$
\begin{equation*}
P_{g} \psi_{\alpha}=\Delta^{2}\left(z_{\alpha} u_{0}\right)-\operatorname{div}\left[\left(\frac{2}{3} R g-2 \operatorname{Ric}\right) \nabla\left(z_{\alpha} u_{0}\right)\right], \tag{2.2}
\end{equation*}
$$

according to the Stokes formula, we derive

$$
\int_{M^{4}} \psi_{\alpha} P_{g} \psi_{\alpha} d v=\int_{M^{4}}\left[\left(\Delta z_{\alpha}\right)^{2} u_{0}^{2}+g\left(\left(\frac{2}{3} R g-2 \operatorname{Ric}\right) \nabla z_{\alpha}, \nabla z_{\alpha}\right) u_{0}^{2}\right] d v .
$$

From Lemma 2.1, we have

$$
\begin{aligned}
& \sum_{\alpha=1}^{N} \int_{M^{4}} \psi_{\alpha} P_{g} \psi_{\alpha} d v \\
& \quad=\sum_{\alpha=1}^{N} \int_{M^{4}}\left[\left(\Delta z_{\alpha}\right)^{2} u_{0}^{2}+g\left(\left(\frac{2}{3} R g-2 \text { Ric }\right) \nabla z_{\alpha}, \nabla z_{\alpha}\right) u_{0}^{2}\right] d v \\
& \quad=\int_{M^{4}}\left(16|H|^{2}+\frac{2}{3} R\right) u_{0}^{2} d v .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\sum_{\alpha=1}^{N} \lambda_{\alpha} \int_{M^{4}} \psi_{\alpha}^{2} d v \leq \int_{M^{4}}\left(16|H|^{2}+\frac{2}{3} R\right) u_{0}^{2} d v . \tag{2.3}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
& \int_{M^{4}} \psi_{\alpha}\left(u_{0} \Delta z_{\alpha}\right) d v \\
& \quad=\int_{M^{4}}\left(z_{\alpha} u_{0}-u_{0} b_{\alpha}\right)\left(u_{0} \Delta z_{\alpha}\right) d v \\
& =-\int_{M^{4}}\left|\nabla\left(z_{\alpha} u_{0}\right)\right|^{2} d v
\end{aligned}
$$

Therefore, for any positive $\delta>0$, we obtain from (2.3)

$$
\begin{align*}
& \lambda_{\alpha}^{\frac{1}{2}} \int_{M^{4}}\left|\nabla\left(z_{\alpha} u_{0}\right)\right|^{2} d v \\
& \quad=-\lambda_{\alpha}^{\frac{1}{2}} \int_{M^{4}} \psi_{\alpha}\left(u_{0} \Delta z_{\alpha}\right) d v \\
& \quad \leq \frac{1}{2}\left(\delta \lambda_{\alpha} \int_{M^{4}} \psi_{\alpha}^{2} d v+\frac{1}{\delta} \int_{M^{4}}\left(u_{0} \Delta z_{\alpha}\right)^{2} d v\right) \\
& \sum_{\alpha=1}^{N} \lambda_{\alpha}^{\frac{1}{2}} \int_{M^{4}}\left|\nabla\left(z_{\alpha} u_{0}\right)\right|^{2} d v \\
& \quad \leq \frac{1}{2}\left(\delta \sum_{\alpha=1}^{N} \lambda_{\alpha} \int_{M^{4}} \psi_{\alpha}^{2} d v+\frac{1}{\delta} \sum_{\alpha=1}^{N} \int_{M^{4}}\left(u_{0} \Delta z_{\alpha}\right)^{2} d v\right) \\
& \quad \leq \frac{1}{2}\left(\delta \int_{M^{4}}\left(16|H|^{2}+\frac{2}{3} R\right) u_{0}^{2} d v+\frac{1}{\delta} \int_{M^{4}} 16|H|^{2} u_{0}^{2} d v\right) . \tag{2.4}
\end{align*}
$$

It is not hard to prove that, for any point and for any α,

$$
\left|\nabla z_{\alpha}\right|^{2}=g\left(\nabla z_{\alpha}, \nabla z_{\alpha}\right) \leq 1
$$

Hence,

$$
\begin{align*}
& \sum_{\alpha=1}^{N} \lambda_{\alpha}^{\frac{1}{2}}\left|\nabla z_{\alpha}\right|^{2} \\
& \quad \geq \sum_{i=1}^{4} \lambda_{i}^{\frac{1}{2}}\left|\nabla z_{i}\right|^{2}+\lambda_{5}^{\frac{1}{2}} \sum_{A=5}^{N}\left|\nabla z_{A}\right|^{2} \\
& \quad=\sum_{i=1}^{4} \lambda_{i}^{\frac{1}{2}}\left|\nabla z_{i}\right|^{2}+\lambda_{5}^{\frac{1}{2}}\left(4-\sum_{j=1}^{4}\left|\nabla z_{j}\right|^{2}\right) \\
& \quad \geq \sum_{i=1}^{4} \lambda_{i}^{\frac{1}{2}}\left|\nabla z_{i}\right|^{2}+\sum_{j=1}^{4} \lambda_{j}^{\frac{1}{2}}\left(1-\left|\nabla z_{j}\right|^{2}\right) \\
& \quad \geq \sum_{j=1}^{4} \lambda_{j}^{\frac{1}{2}} \tag{2.5}
\end{align*}
$$

We obtain, by (2.4) and (2.5),

$$
\int_{M} u_{0}^{2} d v \sum_{j=1}^{4} \lambda_{j}^{\frac{1}{2}} \leq \frac{1}{2}\left(\delta \int_{M^{4}}\left(16|H|^{2}+\frac{2}{3} R\right) u_{0}^{2} d v+\frac{1}{\delta} \int_{M^{4}} 16|H|^{2} u_{0}^{2} d v\right) .
$$

Taking

$$
\frac{1}{\delta}=\sqrt{\frac{\int_{M^{4}}\left(16|H|^{2}+\frac{2}{3} R\right) u_{0}^{2} d v}{\int_{M^{4}} 16|H|^{2} u_{0}^{2} d v}}
$$

we have

$$
\begin{equation*}
\sum_{j=1}^{4} \lambda_{j}^{\frac{1}{2}} \leq 4 \frac{\sqrt{\int_{M^{4}}\left(16|H|^{2}+\frac{2}{3} R\right) d v \int_{M^{4}}|H|^{2} d v}}{\operatorname{vol}\left(M^{4}\right)} \tag{2.6}
\end{equation*}
$$

If the equality holds, we have

$$
\begin{gather*}
\lambda_{1}=\lambda_{2}=\cdots=\lambda_{N} \\
\Delta\left(z_{\alpha}-b_{\alpha}\right)=-\sqrt{\lambda_{5}} \delta\left(z_{\alpha}-b_{\alpha}\right) . \tag{2.7}
\end{gather*}
$$

According to Takahashi's theorem, we know that M^{4} is a round sphere $S^{4}(r)$ for $N=5$ and M^{4} is a minimal submanifold in a sphere $S^{N-1}(r)$ for $N>5$ with $\sum_{\alpha=1}^{N}\left(z_{\alpha}-b_{\alpha}\right)^{2}=r^{2}$. Thus, we have

$$
\lambda_{1}=\lambda_{2}=\cdots=\lambda_{N}=\frac{16}{r^{4} \delta^{2}}
$$

From the definition of the Paneitz operator P_{g}, we have

$$
\begin{equation*}
P_{g}\left(z_{\alpha}-b_{\alpha}\right)=\Delta^{2}\left(z_{\alpha}-b_{\alpha}\right)-\operatorname{div}\left[\left(\frac{2}{3} R g-2 \operatorname{Ric}\right) \nabla\left(z_{\alpha}-b_{\alpha}\right)\right] \tag{2.8}
\end{equation*}
$$

that is, from (2.7) and (2.8), we have

$$
\lambda_{5}\left(1-\delta^{2}\right)\left(z_{\alpha}-b_{\alpha}\right)=-\operatorname{div}\left[\left(\frac{2}{3} R g-2 \operatorname{Ric}\right) \nabla\left(z_{\alpha}-b_{\alpha}\right)\right] .
$$

According to $\sum_{\alpha=1}^{N}\left(z_{\alpha}-b_{\alpha}\right)^{2}=r^{2}$, we obtain

$$
\lambda_{5}\left(1-\delta^{2}\right) r^{2}=\sum_{\alpha=1}^{N} g\left(\left(\frac{2}{3} R g-2 \text { Ric }\right) \nabla\left(z_{\alpha}-b_{\alpha}\right), \nabla\left(z_{\alpha}-b_{\alpha}\right)\right) .
$$

Hence,

$$
\lambda_{5}\left(1-\delta^{2}\right) r^{2}=\frac{2}{3} R .
$$

Thus, the scalar curvature R is constant. Hence, M^{4} is a compact minimal submanifold with constant scalar curvature in a sphere $S^{N-1}(r)$. This finishes the proof of Theorem 1.1.

Proof of Corollary 1.1. Since the unit sphere $S^{N}(1)$ is a hypersurface in \mathbf{R}^{N+1} with the mean curvature $1, M^{4}$ can be seen as a compact submanifold in \mathbf{R}^{N+1} with the mean curvature $\sqrt{|H|^{2}+1}$. According to Theorem 1.1, we complete the proof of Corollary 1.1.

3. Eigenvalues of the Paneitz operator on $M^{n}(n \neq 4)$

Proof of Theorem 1.2. Since $n>4$, eigenvalues of the Paneitz operator P_{g} satisfy

$$
\lambda_{1}<\lambda_{2} \leq \cdots, \lambda_{k} \leq \cdots \rightarrow+\infty .
$$

Let u_{i} be an eigenfunction corresponding to eigenvalue λ_{i} such that $\left\{u_{i}\right\}_{i=1}^{\infty}$ becomes an orthonormal basis of $L^{2}\left(M^{n}\right)$, that is,

$$
\left\{\begin{array}{l}
P_{g} u_{i}=\lambda_{i} u_{i}, \\
\int_{M^{n}} u_{i} u_{j} d v=\delta_{i j}, \quad i, j=1,2, \cdots .
\end{array}\right.
$$

We shall use the same idea to prove Theorem 1.2. But, in this case, we need to use the first eigenfunction u_{1}, which is not constant in general. Thus, we need to compute many formulas. We define an $N \times N$-matrix A as follows:

$$
A:=\left(a_{\alpha \beta}\right)
$$

where $a_{\alpha \beta}=\int_{M^{n}} y_{\alpha} u_{1} u_{\beta+1} d v$, for $\alpha, \beta=1,2, \cdots, N$, and $\mathbf{y}=\left(y_{\alpha}\right)$ is the position vector of the immersion in \mathbf{R}^{N}. Thus, there is an orthogonal matrix $U=\left(q_{\alpha \beta}\right)$ such that

$$
\int_{M^{n}} z_{\alpha} u_{1} u_{\beta+1} d v=0, \quad 1 \leq \beta<\alpha \leq N
$$

where $z_{\alpha}=\sum_{\gamma=1}^{N} q_{\alpha \gamma} y_{\gamma}$. Putting

$$
\varphi_{\alpha}:=\left(z_{\alpha}-a_{\alpha}\right) u_{1}, \quad a_{\alpha}:=\int_{M^{n}} z_{\alpha} u_{1}^{2} d v, 1 \leq \alpha \leq N,
$$

we infer

$$
\int_{M^{n}} \varphi_{\alpha} u_{\beta} d v=0, \quad 1 \leq \beta \leq \alpha \leq N
$$

Thus, from the Rayleigh-Ritz inequality, we have

$$
\begin{align*}
& \lambda_{\alpha+1} \int_{M^{n}} \varphi_{\alpha}^{2} d v \leq \int_{M^{n}} \varphi_{\alpha} P_{g} \varphi_{\alpha} d v, \quad 1 \leq \alpha \leq N . \tag{3.1}\\
& P_{g} \varphi_{\alpha}=P_{g}\left(z_{\alpha} u_{1}\right)-a_{\alpha} P_{g} u_{1}=P_{g}\left(z_{\alpha} u_{1}\right)-\lambda_{1} a_{\alpha} u_{1} . \\
& P_{g}\left(z_{\alpha} u_{1}\right) \\
& =\Delta^{2}\left(z_{\alpha} u_{1}\right)-\operatorname{div}\left[\left(a_{n} R g+b_{n} \operatorname{Ric}\right) \nabla\left(z_{\alpha} u_{1}\right)\right]+\frac{n-4}{2} Q\left(z_{\alpha} u_{1}\right) \\
& =\Delta^{2} z_{\alpha} u_{1}+2 \Delta z_{\alpha} \Delta u_{1}+2 \Delta g\left(\nabla z_{\alpha}, \nabla u_{1}\right) \\
& \quad+2 g\left(\nabla z_{\alpha}, \nabla\left(\Delta u_{1}\right)\right)+z_{\alpha} \Delta^{2} u_{1}+2 g\left(\nabla\left(\Delta z_{\alpha}\right), \nabla u_{1}\right) \\
& \quad-\operatorname{div}\left[u_{1}\left(a_{n} R g+b_{n} \operatorname{Ric}\right) \nabla z_{\alpha}\right]-\operatorname{div}\left[z_{\alpha}\left(a_{n} R g+b_{n} \operatorname{Ric}\right) \nabla u_{1}\right]+\frac{n-4}{2} Q\left(z_{\alpha} u_{1}\right) \\
& =\Delta^{2} z_{\alpha} u_{1}+2 \Delta z_{\alpha} \Delta u_{1}+2 \Delta g\left(\nabla z_{\alpha}, \nabla u_{1}\right)+2 g\left(\nabla z_{\alpha}, \nabla\left(\Delta u_{1}\right)\right)+2 g\left(\nabla\left(\Delta z_{\alpha}\right), \nabla u_{1}\right) \\
& \quad-\operatorname{div}\left[u_{1}\left(a_{n} R g+b_{n} \operatorname{Ric}\right) \nabla z_{\alpha}\right]-g\left(\nabla z_{\alpha},\left(a_{n} R g+b_{n} \operatorname{Ric}\right) \nabla u_{1}\right)+z_{\alpha} P u_{1} \\
& =
\end{align*}
$$

with

$$
\begin{aligned}
r_{\alpha}= & \Delta^{2} z_{\alpha} u_{1}+2 \Delta z_{\alpha} \Delta u_{1}+2 \Delta g\left(\nabla z_{\alpha}, \nabla u_{1}\right) \\
& +2 g\left(\nabla z_{\alpha}, \nabla\left(\Delta u_{1}\right)\right)+2 g\left(\nabla\left(\Delta z_{\alpha}\right), \nabla u_{1}\right) \\
& -\operatorname{div}\left[u_{1}\left(a_{n} R g+b_{n} \text { Ric }\right) \nabla z_{\alpha}\right]-g\left(\nabla z_{\alpha},\left(a_{n} R g+b_{n} \text { Ric }\right) \nabla u_{1}\right) .
\end{aligned}
$$

According to the Stokes formula, we derive

$$
\int_{M^{n}} r_{\alpha} u_{1} d v=0
$$

Letting

$$
\begin{aligned}
w_{\alpha} & =\int_{M^{n}} r_{\alpha} \varphi_{\alpha} d v \\
\int_{M^{n}} \varphi_{\alpha} P_{g} \varphi_{\alpha} d v & =\int_{M^{n}} \varphi_{\alpha}\left(P_{g}\left(z_{\alpha} u_{1}\right)-\lambda_{1} a_{\alpha} u_{1}\right) d v \\
& =\int_{M^{n}} \varphi_{\alpha}\left(r_{\alpha}+\lambda_{1} \varphi_{\alpha}\right) d v
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left(\lambda_{\alpha+1}-\lambda_{1}\right) \int_{M^{n}} \varphi_{\alpha}^{2} d v \leq \int_{M^{n}} \varphi_{\alpha} r_{\alpha} d v=w_{\alpha}=\int_{M^{n}} z_{\alpha} u_{1} r_{\alpha} d v, \quad 1 \leq \alpha \leq N \tag{3.2}
\end{equation*}
$$

By a direct calculation, we obtain

$$
\begin{aligned}
2 \int_{M^{n}} z_{\alpha} u_{1} g\left(\nabla\left(\Delta z_{\alpha}\right), \nabla u_{1}\right) d v= & \int_{M^{n}}\left(\Delta z_{\alpha}\right)^{2} u_{1}^{2} d v \\
& +\int_{M^{n}} \Delta z_{\alpha} g\left(\nabla z_{\alpha}, \nabla u_{1}^{2}\right) d v-\int_{M^{n}}\left(z_{\alpha} \Delta^{2} z_{\alpha}\right) u_{1}^{2} d v \\
2 \int_{M^{n}} z_{\alpha} u_{1} \Delta g\left(\nabla z_{\alpha}, \nabla u_{1}\right) d v= & 2 \int_{M^{n}} u_{1} \Delta z_{\alpha} g\left(\nabla z_{\alpha}, \nabla u_{1}\right) d v \\
& +2 \int_{M^{n}} z_{\alpha} \Delta u_{1} g\left(\nabla z_{\alpha}, \nabla u_{1}\right) d v+4 \int_{M^{n}} g\left(\nabla z_{\alpha}, \nabla u_{1}\right)^{2} d v \\
2 \int_{M^{n}} z_{\alpha} u_{1} g\left(\nabla z_{\alpha}, \nabla\left(\Delta u_{1}\right)\right) d v= & -2 \int_{M^{n}} u_{1} z_{\alpha} \Delta z_{\alpha} \Delta u_{1} d v \\
& -2 \int_{M^{n}} u_{1} \Delta u_{1} g\left(\nabla z_{\alpha}, \nabla z_{\alpha}\right) d v-2 \int_{M^{n}} z_{\alpha} g\left(\nabla z_{\alpha}, \nabla u_{1}\right) \Delta u_{1} d v .
\end{aligned}
$$

Thus, we derive

$$
\begin{align*}
& \left(\lambda_{\alpha+1}-\lambda_{1}\right) \int_{M^{n}} \varphi_{\alpha}^{2} d v \\
& \quad \leq w_{\alpha}=\int_{M^{n}} z_{\alpha} u_{1} r_{\alpha} d v=\int_{M^{n}}\left(u_{1} \Delta z_{\alpha}+2 g\left(\nabla z_{\alpha}, \nabla u_{1}\right)\right)^{2} d v \\
& \quad+\int_{M^{n}} u_{1}^{2} g\left(\left(a_{n} R g+b_{n} R i c\right) \nabla z_{\alpha}, \nabla z_{\alpha}\right) d v-2 \int_{M^{n}} g\left(\nabla z_{\alpha}, \nabla z_{\alpha}\right) u_{1} \Delta u_{1} d v, \\
& 1 \leq \alpha \leq N . \tag{3.3}
\end{align*}
$$

From Lemma 2.1, we have

$$
\begin{align*}
& \sum_{\alpha=1}^{N}\left(\lambda_{\alpha+1}-\lambda_{1}\right) \int_{M^{n}} \varphi_{\alpha}^{2} d v \\
& \quad \leq \int_{M^{n}}\left(n^{2}|H|^{2}+\left(n a_{n}+b_{n}\right) R\right) u_{1}^{2} d v+2(n+2) \int_{M^{n}} g\left(\nabla u_{1}, \nabla u_{1}\right) d v \tag{3.4}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& \int_{M^{n}} \varphi_{\alpha}\left(u_{1} \Delta z_{\alpha}+2 g\left(\nabla z_{\alpha}, \nabla u_{1}\right)\right) d v \\
& \quad=\int_{M^{4}}\left(z_{\alpha}-a_{\alpha}\right) u_{1}\left(u_{1} \Delta z_{\alpha}+2 g\left(\nabla z_{\alpha}, \nabla u_{1}\right)\right) d v \\
& \quad=-\int_{M^{4}}\left|u_{1} \nabla z_{\alpha}\right|^{2} d v \tag{3.5}
\end{align*}
$$

Therefore, for any positive $\delta>0$, we obtain, from (3.5),

$$
\begin{align*}
& \left(\lambda_{\alpha+1}-\lambda_{1}\right)^{\frac{1}{2}} \int_{M^{n}}\left|u_{1} \nabla z_{\alpha}\right|^{2} d v \\
& \quad=-\left(\lambda_{\alpha+1}-\lambda_{1}\right)^{\frac{1}{2}} \int_{M^{n}} \varphi_{\alpha}\left(u_{1} \Delta z_{\alpha}+2 g\left(\nabla z_{\alpha}, \nabla u_{1}\right)\right) d v \\
& \quad \leq \frac{1}{2}\left\{\delta\left(\lambda_{\alpha+1}-\lambda_{1}\right) \int_{M^{n}} \varphi_{\alpha}^{2} d v+\frac{1}{\delta} \int_{M^{n}}\left(u_{1} \Delta z_{\alpha}+2 g\left(\nabla z_{\alpha}, \nabla u_{1}\right)\right)^{2} d v\right\} . \tag{3.6}
\end{align*}
$$

According to (3.4) and (3.6), we infer

$$
\begin{align*}
& \sum_{\alpha=1}^{N}\left(\lambda_{\alpha+1}-\lambda_{1}\right)^{\frac{1}{2}} \int_{M^{n}}\left|u_{1} \nabla z_{\alpha}\right|^{2} d v \\
& \quad \leq \frac{1}{2}\left\{\delta \sum_{\alpha=1}^{N}\left(\lambda_{\alpha+1}-\lambda_{1}\right) \int_{M^{n}} \varphi_{\alpha}^{2} d v+\frac{1}{\delta} \sum_{\alpha=1}^{N} \int_{M^{n}}\left(u_{1} \Delta z_{\alpha}+2 g\left(\nabla z_{\alpha}, \nabla u_{1}\right)\right)^{2} d v\right\} \\
& \leq \\
& \leq \frac{1}{2} \delta\left\{\int_{M^{n}}\left(n^{2}|H|^{2}+\left(n a_{n}+b_{n}\right) R\right) u_{1}^{2} d v+2(n+2) \int_{M^{n}} g\left(\nabla u_{1}, \nabla u_{1}\right) d v\right\} \tag{3.7}\\
& \quad+\frac{1}{2 \delta}\left\{\int_{M^{n}} n^{2}|H|^{2} u_{1}^{2} d v+4 \int_{M^{n}} g\left(\nabla u_{1}, \nabla u_{1}\right) d v\right\} .
\end{align*}
$$

By the same proof as the formula (2.5) in Section 2, we have

$$
\begin{equation*}
\sum_{\alpha=1}^{N}\left(\lambda_{\alpha+1}-\lambda_{1}\right)^{\frac{1}{2}}\left|\nabla z_{\alpha}\right|^{2} \geq \sum_{j=1}^{n}\left(\lambda_{j+1}-\lambda_{1}\right)^{\frac{1}{2}} \tag{3.8}
\end{equation*}
$$

Hence, we obtain

$$
\begin{align*}
& \sum_{j=1}^{n}\left(\lambda_{j+1}-\lambda_{1}\right)^{\frac{1}{2}} \\
& \leq \frac{1}{2} \delta\left(\int_{M^{n}}\left(n^{2}|H|^{2}+\left(n a_{n}+b_{n}\right) R\right) u_{1}^{2} d v+2(n+2) \int_{M^{n}} g\left(\nabla u_{1}, \nabla u_{1}\right) d v\right) \\
& \quad+\frac{1}{2 \delta}\left(\int_{M^{n}} n^{2}|H|^{2} u_{1}^{2} d v+4 \int_{M^{n}} g\left(\nabla u_{1}, \nabla u_{1}\right) d v\right) . \tag{3.9}
\end{align*}
$$

Letting S denote the squared norm of the second fundamental form of M^{n}, from the Gauss equation, we have

$$
R=n(n-1)|H|^{2}-\left(S-n|H|^{2}\right) \leq n(n-1)|H|^{2} .
$$

Since

$$
n a_{n}+b_{n}=\frac{n^{2}-2 n-4}{2(n-1)}>0
$$

we have

$$
n^{2}|H|^{2}+\left(n a_{n}+b_{n}\right) R \leq \frac{n\left(n^{2}-4\right)|H|^{2}}{2} .
$$

Taking

$$
\frac{1}{\delta}=\sqrt{\frac{\int_{M^{n}} n^{2}|H|^{2} u_{1}^{2} d v+4 \int_{M^{n}} g\left(\nabla u_{1}, \nabla u_{1}\right) d v}{\int_{M^{n}} \frac{n\left(n^{2}-4\right)|H|^{2}}{2} u_{1}^{2} d v+2(n+2) \int_{M^{n}} g\left(\nabla u_{1}, \nabla u_{1}\right) d v}}
$$

we have

$$
\begin{align*}
\sum_{j=1}^{n} & \left(\lambda_{j+1}-\lambda_{1}\right)^{\frac{1}{2}} \\
& \leq \sqrt{\int_{M^{n}} \frac{n\left(n^{2}-4\right)|H|^{2}}{2} u_{1}^{2} d v+2(n+2) \int_{M^{n}} g\left(\nabla u_{1}, \nabla u_{1}\right) d v} \\
& \times \sqrt{\int_{M^{n}} n^{2}|H|^{2} u_{1}^{2} d v+4 \int_{M^{n}} g\left(\nabla u_{1}, \nabla u_{1}\right) d v .} \tag{3.10}
\end{align*}
$$

If the equality holds, we have

$$
\lambda_{2}=\lambda_{3}=\cdots=\lambda_{N},
$$

and $S \equiv n|H|^{2}$. Thus, M^{n} is totally umbilical, that is, M^{n} is isometric to a sphere. It completes the proof of Theorem 1.2.

Corollary 3.1. Let $\left(M^{n}, g\right)(n>4)$ be an n-dimensional compact submanifold with the metric g in the unit sphere $S^{N}(1)$. Then, eigenvalues of the Paneitz operator P_{g} satisfy

$$
\begin{align*}
\sum_{j=1}^{n} & \left(\lambda_{j+1}-\lambda_{1}\right)^{\frac{1}{2}} \\
\leq & \sqrt{\int_{M^{n}} \frac{n\left(n^{2}-4\right)\left(|H|^{2}+1\right)}{2} u_{1}^{2} d v+2(n+2) \int_{M^{n}} g\left(\nabla u_{1}, \nabla u_{1}\right) d v} \\
& \times \sqrt{\int_{M^{n}} n^{2}\left(|H|^{2}+1\right) u_{1}^{2} d v+4 \int_{M^{n}} g\left(\nabla u_{1}, \nabla u_{1}\right) d v} \tag{3.11}
\end{align*}
$$

and the equality holds if and only if M^{n} is isometric to a sphere $S^{n}(r)$, where u_{1} is the normalized first eigenfunction of P_{g}.

Proof of Theorem 1.3. Since $n \neq 4$, we assume that eigenvalues of the Paneitz operator P_{g} satisfy

$$
0<\lambda_{1}<\lambda_{2} \leq \cdots, \lambda_{k} \leq \cdots \rightarrow+\infty .
$$

Let u_{i} be an eigenfunction corresponding to eigenvalue λ_{i} such that $\left\{u_{i}\right\}_{i=1}^{\infty}$ becomes an orthonormal basis of $L^{2}\left(M^{n}\right)$, that is,

$$
\left\{\begin{array}{l}
P_{g} u_{i}=\lambda_{i} u_{i}, \\
\int_{M^{n}} u_{i} u_{j} d v=\delta_{i j}, \quad i, j=1,2, \cdots
\end{array}\right.
$$

We shall use the similar method to prove Theorem 1.3. We define an $(N+1) \times(N+1)$-matrix A as follows:

$$
A:=\left(a_{\alpha \beta}\right)
$$

where $a_{\alpha \beta}=\int_{M^{n}} y_{\alpha} u_{\beta} d v$, for $\alpha, \beta=1,2, \cdots, N+1$, and $\mathbf{y}=\left(y_{\alpha}\right)$ is the position vector of the immersion in \mathbf{R}^{N+1} with $|\mathbf{y}|^{2}=\sum_{\alpha=1}^{N+1} y_{\alpha}^{2}=1$. Thus, there is an orthogonal matrix $U=\left(q_{\alpha \beta}\right)$ such that

$$
\int_{M^{n}} z_{\alpha} u_{\beta} d v=0, \quad 1 \leq \beta<\alpha \leq N+1,
$$

where $z_{\alpha}=\sum_{\gamma=1}^{N+1} q_{\alpha \gamma} y_{\gamma}$. Since U is an orthogonal matrix, we have

$$
\sum_{\alpha=1}^{N+1} z_{\alpha}^{2}=1
$$

Putting

$$
\psi_{\alpha}:=z_{\alpha}, \quad 1 \leq \alpha \leq N+1,
$$

we infer

$$
\int_{M^{n}} \psi_{\alpha} u_{\beta} d v=0, \quad 1 \leq \beta<\alpha \leq N+1
$$

Thus, from the Rayleigh-Ritz inequality, we have

$$
\begin{gather*}
\lambda_{\alpha} \int_{M^{n}} \psi_{\alpha}^{2} d v \leq \int_{M^{n}} \psi_{\alpha} P_{g} \psi_{\alpha} d v, \quad 1 \leq \alpha \leq N+1 \\
P_{g} \psi_{\alpha}=P_{g}\left(z_{\alpha}\right) \tag{3.12}
\end{gather*}
$$

According to the Stokes formula, we derive

$$
\int_{M^{n}} \psi_{\alpha} P_{g} \psi_{\alpha} d v=\int_{M^{n}}\left[\left(\Delta z_{\alpha}\right)^{2}+g\left(\left(a_{n} R g+b_{n} \operatorname{Ric}\right) \nabla z_{\alpha}, \nabla z_{\alpha}\right)+\frac{n-4}{2} Q\left(z_{\alpha}\right)^{2}\right] d v
$$

From Lemma 2.1, we have

$$
\begin{align*}
& \sum_{\alpha=1}^{N+1} \int_{M^{n}} \psi_{\alpha} P_{g} \psi_{\alpha} d v \\
& \quad=\sum_{\alpha=1}^{N+1} \int_{M^{n}}\left[\left(\Delta z_{\alpha}\right)^{2}+g\left(\left(a_{n} R g+b_{n} \operatorname{Ric}\right) \nabla z_{\alpha}, \nabla z_{\alpha}\right)+\frac{n-4}{2} Q\left(z_{\alpha}\right)^{2}\right] d v \\
& \quad=\int_{M^{n}}\left(\left(n^{2}|H|^{2}+n^{2}\right)+\left(n a_{n}+b_{n}\right) R+\frac{n-4}{2} Q\right) d v \tag{3.13}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\sum_{\alpha=1}^{N+1} \lambda_{\alpha} \int_{M^{n}} \psi_{\alpha}^{2} d v \leq \int_{M^{n}}\left(\left(n^{2}|H|^{2}+n^{2}\right)+\left(n a_{n}+b_{n}\right) R+\frac{n-4}{2} Q\right) d v \tag{3.14}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\int_{M^{n}} \psi_{\alpha}\left(\Delta z_{\alpha}\right) d v=\int_{M^{n}} z_{\alpha} \Delta z_{\alpha} d v=-\int_{M^{n}}\left|\nabla z_{\alpha}\right|^{2} d v . \tag{3.15}
\end{equation*}
$$

Therefore, for any positive $\delta>0$, we obtain

$$
\begin{align*}
& \lambda_{\alpha}^{\frac{1}{2}} \int_{M^{n}}\left|\nabla z_{\alpha}\right|^{2} d v \\
& \quad=-\lambda_{\alpha}^{\frac{1}{2}} \int_{M^{n}} \psi_{\alpha}\left(\Delta z_{\alpha}\right) d v \\
& \quad \leq \frac{1}{2}\left(\delta \lambda_{\alpha} \int_{M^{n}} \psi_{\alpha}^{2} d v+\frac{1}{\delta} \int_{M^{n}}\left(\Delta z_{\alpha}\right)^{2} d v\right) \tag{3.16}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{\alpha=1}^{N+1} \lambda_{\alpha}^{\frac{1}{2}} \int_{M^{n}}\left|\nabla z_{\alpha}\right|^{2} d v \\
& \leq \frac{1}{2}\left(\delta \sum_{\alpha=1}^{N+1} \lambda_{\alpha} \int_{M^{n}} \psi_{\alpha}^{2} d v+\frac{1}{\delta} \sum_{\alpha=1}^{N+1} \int_{M^{n}}\left(\Delta z_{\alpha}\right)^{2} d v\right) \\
& \leq \frac{1}{2}\left[\delta \int_{M^{n}}\left(\left(n^{2}|H|^{2}+n^{2}\right)+\left(n a_{n}+b_{n}\right) R+\frac{n-4}{2} Q\right) d v\right. \\
& \left.\quad+\frac{1}{\delta} \int_{M^{n}}\left(n^{2}|H|^{2}+n^{2}\right) d v\right] . \tag{3.17}
\end{align*}
$$

By using the same proof as the formula (2.5) in Section 2, we have

$$
\begin{equation*}
\sum_{\alpha=1}^{N+1} \lambda_{\alpha}^{\frac{1}{2}}\left|\nabla z_{\alpha}\right|^{2} \geq \sum_{j=1}^{n} \lambda_{j}^{\frac{1}{2}} \tag{3.18}
\end{equation*}
$$

Thus, we obtain

$$
\begin{align*}
\sum_{j=1}^{n} \lambda_{j}^{\frac{1}{2}} \operatorname{vol}\left(M^{n}\right) \leq & \frac{1}{2}\left[\delta \int_{M^{n}}\left(\left(n^{2}|H|^{2}+n^{2}\right)+\left(n a_{n}+b_{n}\right) R+\frac{n-4}{2} Q\right) d v\right. \\
& \left.+\frac{1}{\delta} \int_{M^{n}}\left(n^{2}|H|^{2}+n^{2}\right) d v\right] \tag{3.19}
\end{align*}
$$

Taking

$$
\frac{1}{\delta}=\sqrt{\frac{\int_{M^{n}}\left(\left(n^{2}|H|^{2}+n^{2}\right)+\left(n a_{n}+b_{n}\right) R+\frac{n-4}{2} Q\right) d v}{\int_{M^{n}}\left(n^{2}|H|^{2}+n^{2}\right) d v}}
$$

we have

$$
\sum_{j=1}^{n} \lambda_{j}^{\frac{1}{2}} \leq n \frac{\sqrt{\int_{M^{n}}\left(\left(n^{2}|H|^{2}+n^{2}\right)+\left(n a_{n}+b_{n}\right) R+\frac{n-4}{2} Q\right) d v \int_{M^{n}}\left(|H|^{2}+1\right) d v}}{\operatorname{vol}\left(M^{n}\right)} .
$$

If the equality holds, we have

$$
\lambda_{2}=\lambda_{3}=\cdots=\lambda_{N+1},
$$

$\left|\nabla z_{1}\right| \equiv 1$ because of $\lambda_{1}<\lambda_{2}$ and

$$
\Delta z_{1}=-\sqrt{\lambda_{1}} \delta z_{1}, \quad \Delta z_{\alpha}=-\sqrt{\lambda_{n}} \delta z_{\alpha} \quad \text { for } \alpha>1
$$

Since

$$
\sum_{\alpha=1}^{N+1} z_{\alpha}^{2}=1
$$

we have

$$
n-\sqrt{\lambda_{n}} \delta+\left(\sqrt{\lambda_{n}} \delta-\sqrt{\lambda_{1}} \delta\right) z_{1}^{2}=0
$$

Thus,

$$
\sqrt{\lambda_{n}} \delta=\sqrt{\lambda_{1}} \delta
$$

or z_{1}^{2} is constant. It is impossible because $\left|\nabla z_{1}\right| \equiv 1$ and $\lambda_{1}<\lambda_{2}$. Therefore, the equality does not hold. It completes the proof of Theorem 1.3.

References

[1] T.P. Branson, Group representations arising from Lorentz conformal geometry, J. Funct. Anal. 74 (1987) 199-291.
[2] T.P. Branson, S.-Y.A. Chang, P.C. Yang, Estimates and extremal for zeta function determinants on four-manifolds, Comm. Math. Phys. 149 (1992) 241-262.
[3] S. Brendle, Global existence and convergence for a higher order flow in conformal geometry, Ann. of Math. (2) 158 (2003) 323-343.
[4] S.-Y.A. Chang, P.C. Yang, Extremal metrics of zeta function determinants on 4-manifolds, Ann. of Math. (2) 142 (1995) 171-212.
[5] S.-Y.A. Chang, M.J. Gursky, P.C. Yang, Regularity of a fourth order nonlinear PDE with critical exponent, Amer. J. Math. 121 (1999) 215-257.
[6] D.G. Chen, Q.-M. Cheng, Extrinsic estimates for eigenvalues of the Laplace operator, J. Math. Soc. Japan 60 (2008) 325-339.
[7] D.G. Chen, H. Li, The sharp estimates for the first eigenvalue of Paneitz operator on 4-dimensional submanifolds, arXiv:1010.3102, 2010.
[8] D.G. Chen, H. Li, Second eigenvalue of Paneitz operator and the mean curvature, Comm. Math. Phys. 305 (2011) 555-562.
[9] M.J. Gursky, The Weyl functional, de Rham cohomology, and Kähler-Einstein metrics, Ann. of Math. (2) 148 (1998) 315-337.
[10] E. Hebey, F. Robert, Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients, Calc. Var. Partial Differential Equations 13 (4) (2001) 491-517.
[11] P. Li, S.-T. Yau, A new conformal invariant and its application to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69 (1982) 269-291.
[12] S. Nishikawa, Conformal variation of the total Q-curvature, in: Geometry and Something, 2011, pp. 125-133, Fukuoka.
[13] S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, Preprint, 1983.
[14] X.W. Xu, P.C. Yang, Positivity of Paneitz operators, Discrete Contin. Dyn. Syst. 7 (2001) 329-342.
[15] X.W. Xu, P.C. Yang, Conformal energy in four dimension, Math. Ann. 324 (2002) 731-742.

[^0]: ty Research partially supported by JSPS Grant-in-Aid for Scientific Research (B) No. 24340013 and Challenging Exploratory Research No. 25610016.

 E-mail address: cheng@fukuoka-u.ac.jp.

